Damage diagnosis using a kernel-based method

A Chattopadhyay, S Das and C K Coelho

This paper presents the use of a kernel-based machine learning technique, popular in the field of pattern recognition, to detect and classify various forms of damage states in both isotropic and anisotropic structures. A classification algorithm based on one-class Support Vector Machines (SVMs) is used for damage detection. The SVMs use a Gaussian kernel to map the input attributes to the high dimensional feature space and the transformed features are linearly separated by a decision plane. A procedure for obtaining the optimal value of the hyperparameter that controls the smoothness of the kernel is described. The type of damage addressed in this paper includes a combination of loose bolt and fatigue crack damage in a single lap, A1 6061-T651, bolted joints. Graphite/epoxy composite laminates with different types of damage are also studied, taking into account uncertainties in the measurement and material properties. The results show that the algorithm is able to accurately distinguish between different torque states and changes in crack length in the bolted joint sample. In anisotropic media, the algorithm was able to detect and classify various damage signatures with significant accuracy, using mutual information of two sensors. The algorithm was able to produce similar levels of accuracy when variability due to material properties was introduced.

Keywords: Structural health monitoring, time embedding technique, kernel, Support Vector Machines, fatigue crack, bolted joint, classification, anomaly detection.

Nomenclature

\(\alpha = \) Lagrange multiplier \\
\(\Theta = \) Feature map \\
\(\nu = \) Vector from origin to hyperplane \\
\(\rho = \) Offset of hyperplane from the origin \\
\(\xi = \) Slack parameter \\
\(K = \) Radial Basis Function kernel \\
\(\gamma = \) Classification error limit \\
\(F = \) Decision function \\
\(x = \) Input signals \\
\(z = \) Input signals mapped to high dimensional space

Introduction

The principal objective of structural health monitoring (SHM) is to be able to detect the presence of defects close to the nucleation stage so that steps can be taken to avoid system or sub-system level failure. Capabilities for in situ interrogation, therefore, must be advanced by coordinated research in materials physics, fundamental sensor design, sensor electronic systems and their implementation, sensor management and data processing, and information-level analysis. Although data management occurs last in the process of analysing physical material properties and determining required actions, it is first and most important at defining systems-level requirements on sensor performance, the correlation between sensor information and materials degradation and damage, and the associated levels of confidence in that relationship. This paper presents a kernel-based method to diagnose structural defects and presents some examples on the implementation of this technique for isotropic media with complex geometries and anisotropic laminates with different types of damage. Thus, the performance of the classifier is tested taking into account changes in the type of material, geometry and damage type. An anomaly detection tool is developed using one-class Support Vector Machines (SVMs) which utilise only the nominal state of the system while looking for different fault modes that might occur during its operation.

The fundamental idea behind the kernel-based method is to use a function \(\Theta \) that maps a given dataset, \(x \), into the Hilbert space and the transformed features are then manipulated to perform a specific task. Here the objective is to separate different defect signatures (patterns) and, specifically, Radial Basis Function (RBF) has been used to do the mapping. Throughout this research, Support Vector Machines have been used as a data driven tool to separate the transformed images of the original dataset. There are many different applications of SVM methods currently being used for anomaly detection and pattern recognition. The advantage of using these methods for classification lies in the fact that they produce reasonably accurate results while using only a fraction of the computational time of other commonly used algorithms\(^{11,12}\).

Data driven methods can be supervised or unsupervised in nature, based on the way they are trained on the available historical data. In unsupervised learning technique, the model experiences the nominal behaviour of the system only and would identify unseen abnormalities, if that occurs. Here, the system is trained only with the
dataset or attributes extracted from those datasets that characterise the normal behaviour of the system and considered as 'observed' features. However, in supervised learning it is assumed that the given system features have already been classified by a human expert into n categories, based on some prior knowledge, and the training is performed on all possible categories. The drawback of this method is that every possible behaviour for a system must be known for accurate classification, which is not practical for real world problems where an infinite number of off-normal behaviours can exist. The one-class SVM, an unsupervised technique used in this study, identifies outliers in the test dataset and characterises anomalous behaviours in vibration signatures.

In the current research, single lap bolted joints have been chosen as the test specimens because fatigue damage is often induced in them due to the stress concentrations caused by fretting at the interfaces and variations in part geometry. One particular problem of fatigue in bolted joints occurs when a bolt comes loose and the life of the joint is dramatically reduced. The role of torque or preload in a bolted joint is to provide a clamping load at the interface resulting in a friction type joint where the load is transferred directly from one lap to another through friction. A loose bolt converts the joint into a bearing-type joint where load is transferred through the bolt hole, resulting in faster nucleation and propagation of cracks. A wave-based technique has been adopted to detect and characterise defects in the single lap bolted joint using piezoceramic transducers, mounted on the surface of complex geometry. These transducers can be used both as actuator or sensors depending on the requirement of application and have a wide variety of applications in the field of active diagnosis. The paper uses an active wave-based technique with narrow band burst signal and the choice of the input excitations makes the detection and quantification task much simpler because of low dispersion effects and distinct 'wave packet' characteristics when compared to broad band excitations like chirp signals. Experimental data has been collected from a single lap bolted joint set-up subjected to fatigue loading. An optical telescope was used to measure the length of the crack every time the fatigue loading was paused for measurements. Various cases of torque level and crack length were studied using data collected from the multiple, surface-mounted sensors. The goal is to classify different defect modes due to fatigue under the influence of torque load in the bolt.

High-performance lightweight composites are increasingly popular in the field of aerospace, automobile, weapons and mechanical systems. Though composites offer a high strength-to-weight ratio and can be tailored based on application, they also exhibit specific types of multiscale and complex damages such as delaminations, matrix cracks, fibre breakage, etc. The second phase of this research demonstrates the application of the proposed kernel-based classifier to detect and classify the signature characteristics due to the presence of various types of damage such as delaminations, drilled holes, notches and saw-cut in composite laminates, so that the status of the structure can be ascertained. A sufficient number of test samples was used to account for uncertainties in material properties.

The paper is organised as follows. Section 2 discusses the theory behind the SVM classifier and provides a brief description on the time-embedding technique used to generate the features of the input space. This is followed by some details on the conducted experiments. Section 3 presents some conclusions and discussion on the outcomes of the detection algorithm.

Support Vector Machines: a kernel classifier

The Support Vector Machines (SVMs) is a machine learning technique that maps the extracted feature vector of input space to high-dimensional domain known as feature space and thereafter constructs an optimal hyperplane to separate the features by solving a quadratic optimisation problem. Often, in real world, patterns are nonlinearly separable in input space. The idea is to map the n-dimensional vectors of the input space into a high-dimensional (possibly infinite dimensional) feature space (Figure 1) where the transformed image of the input patterns are linearly separable. This can be achieved using Cover’s theorem, which states that a multi-dimensional input space can be transformed to a feature space where the transformed image of the input patterns are linearly separable provided the transformation is non-linear and the dimensionality of the feature space is high enough.

![Input Space](image) ![Feature Space](image)

Figure 1. Features mapped and separated in high-dimensional space

The high dimensionality of the feature space enables the construction of a linear separating hyperplane in the space. However, numerical optimisation schemes in high dimension would suffer from the problems associated with dimensionality. Such computational complexities can be avoided by taking the advantage of the inner-product kernel where the dot product in the feature map is implicitly computed by evaluating the simple kernel, thus avoiding the explicit calculation of the feature map. In the present study, the input data is mapped into an infinite-dimensional feature space using a Radial Basis Function (RBF) kernel and can be expressed as:

$$K(x, y) = \exp \left(-\frac{1}{\sigma^2} ||x - y||^2 \right)$$

where the two vectors correspond to the input vector X and the ρ input pattern ϕ.12 RBFs12 are popular for interpolating scattered data as the associated system of linear equations is guaranteed to be invertible under very mild conditions on the locations of the data points. For example, the thin-plate spline only requires that the points are not co-linear and the Gaussian and multiquadric place no restrictions on the locations of the points. In particular, RBFs do not require that the data lie on any sort of regular grid. Once the data is mapped to the N dimensional space, an N-dimensional hyperplane is constructed that maximises the separation of the data from the origin taking into account the non-linear relationship of the data, treating the origin as belonging to the second class. Traditional methods utilise a structure risk minimisation method to minimise the empirical training error.13 The method employed here maximises the separation of the data from the origin, thus maximising the observable difference between the training set and data that belongs to a different class. The classifier uses the outliers as representatives of data that has not been observed in the training set. This optimisation problem is aimed at finding the optimal set of hyperplane parameters for which the margin of separation between the origin and the support vectors is maximised. This is the same as minimising the Euclidean norm of the weight vector w.2$ For non-separable patterns, the primal problem can be formulated as follows:

$$\min_{w, b, \xi} \frac{1}{N} \sum_{i=1}^{N} \xi_i + \frac{1}{2} \|w\|^2 \quad J = \frac{1}{N} \sum_{i=1}^{N} \xi_i$$

where ξ_i is the slack variable, representing the misclassification error.
subject to $\langle v, \Theta(v) \rangle \geq \rho - \xi, \xi \geq 0$, for $v \in [0,1]$ where Θ is the feature map, ρ is the separation of the hyperplane from the origin, v is the training error limit and ξ is the non-zero slack variable. Setting up the dual problem (Eq. 6) is achieved by first constructing the Lagrangian function, which is expressed as:

$$J(x, p, a) = \frac{1}{2} w^T w - \sum_{i=1}^{N} a_i \left[y_i (w^T x_i + p) - 1 \right]$$

The two optimality conditions are:

$$\frac{\partial J(w, p, a)}{\partial w} = 0$$

$$\frac{\partial J(w, p, a)}{\partial p} = 0$$

Using the two conditions of optimality and Kuhn-Tucker condition on the Lagrangian function, with some simple manipulations it is possible to construct the dual problem which is expressed as:

$$\min_a \frac{1}{2} \sum_{i=1}^{N} \alpha_i K(x_i, x_i)$$

subject to $0 \leq \alpha_i \leq \frac{1}{\rho}, \sum \alpha_i = 1$, where α_i is the Lagrange multiplier. The offset parameter (p) can be recovered for all values of α_i. Once this optimisation problem is solved, all the parameters necessary to construct the optimal hyperplane are known. Mathematically, features with non-zero Lagrangian multipliers ($\alpha_i \neq 0$) are termed as support vectors. Once $\Theta(x)$ and α_i are available, the offset can be calculated from the following relation:

$$p = \sum_k \alpha_k K(x_i, x_i)$$

Although all the points in Θ are separable, it may not be computationally effective to compute the canonical hyperplanes for data sets that are not linearly separable; therefore an allowable training error ν is introduced20. Even though this results in a hyperplane that is not canonical, it yields acceptable solutions quickly. In this paper, an allowable error of 10% was the maximum allowed which means that a 90% classification rate must be achieved when constructing the hyperplane using the training data. This parameter allows the user to make a trade-off between model complexity and training error. The main advantage of the one-class SVM becomes apparent while training the algorithm because only one class of data belonging to any arbitrary reference can be used20. Since there is often no data pertaining to the healthy state of an existing structure, an algorithm must not be greatly affected by a change in the training data. To achieve the optimum classification rate, the algorithm minimises the upper bound of the generalisation error by maximising the separations of the most similar patterns or support vectors in hyperspace. As a consequence, the margin between the data and the separating hyperplane is also maximised20. During classification, if the test data points are sufficiently different from the training data they are placed near the origin, on the opposite side of the decision plane. This represents a change in the state of the system that is most likely due to structural or sensor damage. To determine on which side of the hyperplane a particular point belongs, a decision function is used to test each new data point. The decision function for a given test vector $\Theta(z)$ is expressed in terms of the RBF kernel by the following function:

$$F(z) = \text{sign} \left(\sum \alpha_i K(x_i, z) - \rho \right)$$

where $F(z)$ is the decision function that decides whether a training point should be on the same side of the hyperplane as the training data or on the opposite side of the decision plane. This represents a change in the state of the system that is most likely due to structural or sensor damage. To determine on which side of the hyperplane a particular point belongs, a decision function is used to test each new data point. The decision function for a given test vector $\Theta(z)$ is expressed in terms of the RBF kernel by the following function:

$$F(z) = \text{sign} \left(\sum \alpha_i K(x_i, z) - \rho \right)$$

where $F(z)$ is the decision function that decides whether a training point should be on the same side of the hyperplane as the training data or on the opposite side of the decision plane. This represents a change in the state of the system that is most likely due to structural or sensor damage. To determine on which side of the hyperplane a particular point belongs, a decision function is used to test each new data point. The decision function for a given test vector $\Theta(z)$ is expressed in terms of the RBF kernel by the following function:

$$F(z) = \text{sign} \left(\sum \alpha_i K(x_i, z) - \rho \right)$$

where $F(z)$ is the decision function that decides whether a training point should be on the same side of the hyperplane as the training data or on the opposite side of the decision plane. This represents a change in the state of the system that is most likely due to structural or sensor damage. To determine on which side of the hyperplane a particular point belongs, a decision function is used to test each new data point. The decision function for a given test vector $\Theta(z)$ is expressed in terms of the RBF kernel by the following function:

$$F(z) = \text{sign} \left(\sum \alpha_i K(x_i, z) - \rho \right)$$

where $F(z)$ is the decision function that decides whether a training point should be on the same side of the hyperplane as the training data or on the opposite side of the decision plane. This represents a change in the state of the system that is most likely due to structural or sensor damage. To determine on which side of the hyperplane a particular point belongs, a decision function is used to test each new data point. The decision function for a given test vector $\Theta(z)$ is expressed in terms of the RBF kernel by the following function:

$$F(z) = \text{sign} \left(\sum \alpha_i K(x_i, z) - \rho \right)$$
Figure 3. Demonstration of optimal σ selection

Figure 4. Two-dimensional delay construction (sensor 7 response; under 100% torque 0 kcycles)

Figure 5. Phase portrait x(t) vs x(t+1) for three separate measurements under same torque condition

Figure 6. Phase portrait x(t) vs x(t+1) for three separate measurements under different torque condition

Figure 7. Experimental set-up used to fatigue bolted joints

Experimental procedure for the bolted joint specimen

The test specimens that were used for testing were machined out of Al 6061-T651 plate, 1/8” thick. The dimensions of the laps were chosen so that they were representative of commonly used joints in aerospace structures. Since the location of the notch was known before testing, only the centre lap was mounted with sensors. The single lap bolted joint was instrumented with 0.25 in diameter, 0.01 in thick, APC 850 PZTs in an optimised arrangement. The fatigue loading of the bolted joint was carried out on an Instron 1331, 22 kip capacity servo hydraulic load frame. The joint was subjected to a 2 kip max load (R=0.1) at 20 Hz. To speed up the testing, one bolt was left completely loose while the other bolts were tightened to 100 in-lb of torque. Figure 7 shows the set-up that was used.
In order to know the exact initiation site for the crack, the bolt head with the loosened bolt was notched using an electrical discharge machining (EDM) wire. The fatigue test was paused frequently during the test to take PZT measurements and pictures of the damage. Pictures were taken using a camera attached to an optical camera focused on the notch. In order to improve the picture quality and make it easier to distinguish surface scratches from a growing crack, only the viewing surface was polished using 1200 grit paper. The rest of the contact surfaces were untouched so that the fatigue behaviour of the structure was not significantly altered. The bolted joint was left on the frame when data was collected to ensure uniform boundary conditions for all the readings. The level of torque in the loosened bolt was also adjusted to 30, 60 and 100% to show the effect of torque on the observed signal at a given crack length. A 130 kHz, Gaussian windowed sine wave was used as the excitation signal. The acquisition was carried out at a rate of 2 MS/s with 100 observations taken for each sensor.

Before the test specimen could be instrumented with detection hardware, it was necessary to determine the wave attenuation in the aluminium media. By understanding the extent of the attenuation in the material, distance between sensors placed on the structure can be determined so that there is sufficient overlap of the sensing regions in the structure. An optimal sensor placement technique is used to determine the placement of the sensors on the structure. The optimisation was constrained so that sensors were not placed too close to the edges or the bolts. The resulting sensor placements are shown in Figure 8. Once the placement of the sensors is determined, it is necessary to decide the minimum size of crack that can be detected, so that a threshold voltage corresponding to that minimum crack size can be determined and any signal with a lower voltage is ignored as noise.

![Figure 8. Optimised sensor placement used for data collection](image)

Experimental procedure for the composite specimens

The composite samples were manufactured using a composite prepreg laid up in a [0/90]s configuration and cured in a hot press using a standard curing heat and pressure cycle. The sample was clamped at one end and mounted with Thunder PZTs as shown in Figure 9, with sensors mounted on either side of the damaged region. Four types of damage, namely delamination, drilled hole, notch, saw cut were tested.

A similar input signal to that used for the bolted joint was applied to the different composite. The excitation signal was used at 8 kHz tone burst signal with a sampling frequency of 100 kHz. To account for the material variability, data was collected from four coupons from each damage category. Ten observations were made for each coupon subjected to identical boundary conditions to account for experimental uncertainties associated with data acquisition.

Signal conditioning

Since the data for the bolted joint specimen was collected while it was still mounted on the servo hydraulic frame, the acquired signal had some parasitic parameters that had to be removed before classification. These parameters included broadband noise, a low frequency wiggles since the sample was still mounted on the frame, non-uniform signal energy and DC clamping. In order to remove these parameters, the data was first processed using band pass filter, allowing frequencies between 10-300 kHz to remove the low frequency wiggles, noise and DC clamping. The signals were then normalised and down sampled to make the signal processing faster. A matching pursuit decomposition using 60 iterations was used to decompose the signal and then reconstruct it to make the input signal smoother for classification. This step was not necessary for the data collected for the composite sample since it was collected while the sample was in a completely static condition and data was collected using a lower excitation and sampling frequency.

Results and discussion

Table 1 shows the result of the SVMs classification of damage on the metallic bolted joint specimen at a constant torque. All the data in this Table refers to data collected after the sample exhibited signs of fatigue damage and the loosened bolt is at 0% torque. The matrix R_1 represents the ability of the classifier to correctly distinguish between the ith and jth class of damage. To obtain this matrix, a matrix Q, which represents percentage of correct classification when training with each row (p_s class) and testing with each column (p_s class) is calculated. To understand the selection criteria used to create R from Q, consider the following.

Let A and B represent 2 classes of signals that may or may not be distinct. If we train the algorithm with A and test with B it will yield a classification rate X. Similarly, training with B and testing with A yields a classification rate Y. If the absolute value of the difference between X and Y is less than a defined threshold, then the two signals A and B belong to the same class and this has been used as a selection criteria. In the present analysis, this difference is taken to be less than five percent (Eq. 10) of the required classification rate ($1\times$). Geometrically, the selection criteria means that the hyperplane constructed for the first one is very similar to the hyperplane constructed in the second case in that most of the data lies on the same side for both cases. In this study, R_2 is the number of observations classified as being in the same class in Q, divided by the total number of observation combinations.

Table 1 represents the outcome of the kernel-based classifier when trained with each class of data and trained across all

<table>
<thead>
<tr>
<th>R_{ij}</th>
<th>$y = 0.01$</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>155</th>
<th>200</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>1</td>
<td>0.0124</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>0.0124</td>
<td>1</td>
<td>0.0136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>0</td>
<td>0.0136</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>0</td>
<td>0</td>
<td>0.0136</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>0</td>
<td>0</td>
<td>0.0136</td>
<td>0.0136</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0136</td>
<td>0.0136</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0136</td>
<td>0.0136</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 9. Experimental set-up for composite](image)

Table 1. Outcome of the classifier using data from sensor 7 for constant torque
possible datasets from different classes. For example, if trained with 130 keycyles, the algorithm is able to correctly classify 100% of the test sets of 130 keycyles but shows 1.2% misclassification on the 1.35 keycyles data. One important observation is that the misclassification, though small, mainly occurs when the training and testing sets belong to the classes when the effects due to the change in crack sizes are very small (for example, between 145/155 keycyles test cases). The classifier can accurately categorise the signatures from different crack sizes as long as the change in crack length is sufficiently large. When the difference between the crack size for the training and testing class is large enough, the classifier is able to classify 100% of the signals as belonging to a different class.

Table 2 shows a similar classification outcome matrix, but this time all the data is selected from the healthy state (0 keycyles) and the amount of correct classification as a function of torque level is shown. Every damage state consists of 100 observations, of length 400. The algorithm used 50 waveforms for training and 50 waveforms for testing. The Table shows that the algorithm is able to classify all torques with accuracy greater than 94%. From these results, it can be seen that the algorithm can very accurately classify fatigue damage and torque loss states for a constant torque level and constant crack size respectively.

Table 2. Outcome of the classifier using data from sensor 7 for fatigue damage state

<table>
<thead>
<tr>
<th>R_k</th>
<th>v = 0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>60</td>
<td>0.99</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
</tr>
</tbody>
</table>

For the data analysed for the composite sample, Table 3 shows the different damage cases used for training and testing. Ten observations from each class were first used as training data and used to classify the remaining test signals from each class. Then the training set is used as the testing data and the training data is used as the testing data. Tables 4 and 5 show the results of the classification for each combination of training and testing data. From these Tables it can be seen that there are some cases of misclassification, when the training and testing cases are reversed for certain cases. The selection criterion applied can be expressed as follows:

\[R_k = R_k^{0.03} \leq 0.05(1 - v) \]

\[R_k = R_k^{0.03} \geq 1 \]

In order to improve the classification result, the R_k matrices of sensor 1 and sensor 2 were combined to construct the matrix M as shown below:

\[M = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} \]

and

\[M = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} \]

The matrix M represents the final outcome of the classifier based on the mutual information of both sensors. The difference between the classification rate X and Y had to be greater than or equal to 5 percent.

Table 3. Training and testing sets for different damage types in composite material

<table>
<thead>
<tr>
<th>Damage class</th>
<th>Training class</th>
<th>No. of observations</th>
<th>Testing class</th>
<th>No. of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>TRC1</td>
<td>10</td>
<td>TRC1</td>
<td>10</td>
</tr>
<tr>
<td>Delaminated</td>
<td>TRC2</td>
<td>10</td>
<td>TRC2</td>
<td>10</td>
</tr>
<tr>
<td>Drilled hole</td>
<td>TRC3</td>
<td>10</td>
<td>TRC3</td>
<td>10</td>
</tr>
<tr>
<td>Notch</td>
<td>TRC4</td>
<td>10</td>
<td>TRC4</td>
<td>10</td>
</tr>
<tr>
<td>Saw cut</td>
<td>TRC5</td>
<td>10</td>
<td>TRC5</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4. Output of the classifier for case 1, sensor 1

<table>
<thead>
<tr>
<th>R_k</th>
<th>v = 0.01</th>
<th>TRC1</th>
<th>TRC2</th>
<th>TRC3</th>
<th>TRC4</th>
<th>TRC5</th>
<th>TRC6</th>
<th>TRC7</th>
<th>TRC8</th>
<th>TRC9</th>
<th>TRC10</th>
<th>TRC11</th>
<th>TRC12</th>
<th>TRC13</th>
<th>TRC14</th>
<th>TRC15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 5. Output of the classifier for case 1, sensor 2

<table>
<thead>
<tr>
<th>R_k</th>
<th>v = 0.01</th>
<th>TRC1</th>
<th>TRC2</th>
<th>TRC3</th>
<th>TRC4</th>
<th>TRC5</th>
<th>TRC6</th>
<th>TRC7</th>
<th>TRC8</th>
<th>TRC9</th>
<th>TRC10</th>
<th>TRC11</th>
<th>TRC12</th>
<th>TRC13</th>
<th>TRC14</th>
<th>TRC15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 6. Output of the classifier for composite data using two sensors

<table>
<thead>
<tr>
<th>R_k</th>
<th>v = 0.05</th>
<th>TRC1</th>
<th>TRC2</th>
<th>TRC3</th>
<th>TRC4</th>
<th>TRC5</th>
<th>TRC6</th>
<th>TRC7</th>
<th>TRC8</th>
<th>TRC9</th>
<th>TRC10</th>
<th>TRC11</th>
<th>TRC12</th>
<th>TRC13</th>
<th>TRC14</th>
<th>TRC15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
</tr>
</tbody>
</table>

Conclusion

A kernel-based classification technique has been used along with active wave-based approach to detect and classify damage in both metallic and composite structures. The procedure has been used to classify fatigue damage caused by the loss of torque in a bolt and associated crack growth. Composite laminates with different
cases were still present. To improve the detection method, information from both sensors was combined yielding very accurate results. The effect of material variability was also included and the classifier was still able to correctly identify 100% of the classes using mutual sharing of information from multiple sensors. This was expected since the effect of material variability did not significantly alter the classification rate of the individual sensors. In both cases, combining information from both sensors produced 100% classification results.

Acknowledgements

The research was supported in parts by: Air Force Office of Scientific Research, grant FA9550-06-1-0309, technical monitor Dr Victor Giurgiutiu, and NASA Ames Research Center, grant NNA07CN66A, technical monitor Dr Rodney Martin.

References